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Abstract-A mathematical model including the volumetric changes for food freezing or thawing is obtained 
by modifying the general heat conduction parabolic partial differential equation. The shape of food is 
assumed to be a body of rotation with an irregular cross-sectional contour. Coordinates are fixed to the 
initial food volume through a proper coordinate transformation. Due to the highly temperature-de~ndent 
food properties during phase change, the nodal temperatures are solved numerically by a general implicit 
finite difference method while a heat balance method is applied to boundary nodes with any kind of 
boundary conditions. A computerized numerical simulation method is developed and verified exper- 

imentally for a general heat conduction phase change (solidification/melting) problem. 

INTRODUCTION 

TRANSIENT heat conduction involving solidification 
and melting is important in many engineering appli- 
cations, e.g. food freezing and thawing, ground freez- 
ing and metal casting. The exact solution of such a 
problem is diflicult because of the moving interface 
between the solid and liquid phase when latent heat 
is absorbed or released. Although there are many 
methods available for solving these phase change or 
‘moving boundary’ problems, they are usually only 
applicable to specific cases such as in an infinite or 
semi-infinite domain with simple initial and/or bound- 
ary condition [l-3]. When the material physical prop- 
erties are functions of temperature, the analytical solu- 
tions for a finite irregular domain are almost imposs- 
ible to obtain. 

The numerical solutions (finite difference, finite 
element and boundary element methods) of heat con- 
duction processes with phase change and with non- 
linearity of material properties also present some 
dificulties. Lynch and O’Neil [4], and Yoo and 
Rubinsky [5] used a time-variable mesh finite element 
method, which explicitly traced the interface position, 
to solve the phase change problem. Although, the 
tome-variable mesh approach often offers good accu- 
racy, it is limited to simpler geometries. The finite 
diff’erence solution of a heat conduction equation is 
usually confined to simple shape domains. Pham [6] 
proposed a fast, unconditionally stable finite differ- 
ence scheme which avoids the jumping of the latent 
heat peak (temperature method with large time step) 
and eliminates the convergence problem and iterative 
procedures if enthalpy methods with explicit and 
implicit schemes were used, respectively. Although 
the finite element method is more flexible for an ir- 
regular domain than the finite difference method, 

Shamsundar and Rooz [7] point out that the computer 
time required by the finite element method is three 
times that by the finite difference method in the one- 
dimensional moving boundary case (freezing of a 
saturated liquid with constant wall heat flux). The 
advantages and disadvantages of both numerical 
methods for solving the moving boundary problems 
are also given and will not be repeated here. Recently, 
Saitoh and Kato [S] introduced a random point 
method (RPM) which utilizes randomly generated 
points around a pivotal point to formulate the govern- 
ing equations. They claimed that no mesh generation 
is necessary and it can be applied to the three-d~men- 
sional moving boundary problem. 

Many researchers have used numerical methods to 
solve heat conduction equations for freezing and 
thawing time estimation or process simulation in 
which the food properties are temperature dependent. 
Fleming [9] proposed a finite difference computer 
algorithm to simulate the food freezing processes 
which can be applied to irregular shapes. Unevenly 
discrerized elements and stepwise constant thermal 
diffusivities over certain temperature intervals were 
applied. However, there was no report of detailed 
simulation results for irregular food. Purwadaria and 
Heldman [lo] solved the heat conduction equation 
using the finite element method (two-dimensional sim- 
plex triangular elements) to simulate heat transfer in 
elliptical and trapezoidal shapes. They used a mass or 
area average enthalpy criterion to solve the equation. 
A generally applicable computer program was 
developed on ref. 11 I] to estimate heat transfer in an 

irregular shaped food undergoing freezing or thawing 
by using isoparametric finite elements. Succar 
and Hayakawa [12], Bonacina and Comini [ 131, 
Mannapperuma and Singh [ 141, Pham [ 151, and 
Cleland and Earl 1161 also showed the freezing results 
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NOMENCLATURE 

Biot number [ ] 
dimensionless modified mass transfer 

Biot number as defined [-J 
apparent specific heat [J kg- ’ K ‘1 
empirical constant for apparent specific 
heat as detincd [J kg ’ K “‘I 

.u-directional cosine of an outward 
direction normal to boundary surface 
[_ __~] 

J,-directional cosine of an outward 
direction normal boundary surface 

[El 
view factor [ -1 
dimensionless process time as defined 
enthalpy of fusion [J kg ‘1 

convective heat transfer coefficient 

[W m ‘K ‘1 

convective mass transfer coefficient 
[(kg of water) s ’ m ’ Pa ‘] 
thermal conductivity of food in .\-- or ,I‘- 

direction [W mm ’ K ‘1 

k,,. k,, k ,, . k, values of food at unfrozen 

state [W m ’ K ‘] 

li,,. k,, h ~. k, values at refcrencc 

temperature, 233.15 K 
latent heat of water vaporization or 

sublimation [J kg ‘] 
L/L, [---I 

characteristic length of food [m] 
saturated pressure of water vapor at the 

food surface [Pa] 
partial pressure of water vapor in the 

surrounding medium [Pa] 
dimensionless radiative heat transfer 

coefficient as defined [-_I 
dimensionless apparent heat capacity 

]~ 1 
dimensionless density, p/pr [-_I 
dimensionless thermal conductivity in .Y- 

direction [--1 
dimensionless thermal conductivity in .r’- 

direction [ --] 
food surface [m’] 
empirical constant as defined 

[kgm-’ Km’] 

s,, I \ . .s,, I empirical constants for .Y- and 
r,-directional thermal conductivity 

estimation. respectively. as defined 
[J s ’ m 2 K ‘1 

s I\\ empirical constant as defined 
[Js ‘m ‘K ‘1 

s,, food surface at its initial tcmperaturc 
[1712‘1 

1 temperature [K] 

T‘U reference surrounding medium 
temperature, 233. I5 K 

l’,,: reference initial temperature. 28 I. I5 K 

7;U freezing point of pure water [K] 
/ time [s] 
C’ dimensionless temperature [ 1 
L.‘, T,,:( Tc,, - T,,) [~ 1 
C’ food volume [m ‘1 

t ‘0 food volume at its initial temperature 

state [m ‘1 
.Y, _t’. z coordinates as functronal of local 

tcmperaturc [m] 
.\-,,, .r,, rcfcrcnce coordinates corresponding to 

the initial food temperature [ml. 

Greek symbols 

Xl 
.1 

(5 

1: 

I/(_’ 

0 

A0 
1’ 

5 ” 
i. i 

0 

ci 

CD 
(‘1 

thermal diffusivity at T,, [ml s ‘1 

.u-directional expansion factor [--I 
ratio of .u-directional thermal 
conductivity to J.-directional one [-_1 
cmissivity of material [- 1 

J’,,. 7J directional linear expansion 

factors in three directions [ ] 
angle between normal directional 
outward axis and X- or [-axis 
radius of a small controlled volume [- 
ratio of c- to .u-directional expansion 
factor in Cartesian system [ --I 
dimensionless coordinates 
corresponding to .Y and 1‘ [- mm1 
density as functional of temperature 

[kg m ‘1 
StcfanBoltzmann constant 

[Js ‘m ‘K “1 
dimensionless parameter for VI [ ] 
ratio of_r- to X- (or Z- to r-)directional 
expansion factor [ 1. 

Subscripts 

s 
sh 
.Y. 4 

_I’, i 
0 

ambient 
specific heat capacity 

density 
heat sink 
food property at unfrozen state 
reference temperature. 233. I5 K (01 

-40 C) 
surface 
initial freezing point of food 
Y- or g-axis 
r- or i-axis 
Initial food temperature. 

Superscripts 
nc’ empirical constant for apparent specific 

heat as defined [-_I 

P index of y-axis rotation [ 1. 
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using finite difference techniques in simple shaped 
foods. Cleland et al. [17] reported that the computer 
time required for the simulation of a rectangular brick 
by the finite element method (7 x 7 x 7 node grid with 
216 evenly sized, eight-node, linear isopar~et~c 
elements) was at least ten times greater than that for 
the finite difference method (9 x 9 x 9 evenly spaced 
node grid) according to their food freezing simulation. 

Welty [18] recommended the application of a heat 
balance method together with a traditional finite 
difference technique for freezing and thawing process 
simulations. Rosenau 1191 found that ten nodal points 
are sufficient for the simulation of one-dimensional 
freezing time estimation by considering the heat 
balance of each shell volume of an infinite cylinder. 
However, there is no one taking into account the 
volumetric change in the food freezing/thawing simu- 
lation research. 

No supercooling was assumed in the above equa- 
tion since freezing of most foods proceed at a slow 
rate. All physical properties are assumed to be tem- 
perature dependent. The coordinates, fixed to current 
food volume, x and y, are time variable because of a 
volumetric change due to freezing and thawing. In 
order to estimate properly the apparent specific heat 
of a food material, the equation proposed by Comini 
and Del Giudice [20] by using an enthalpy gradient 
was applied and is shown below 

C = dl_ldT 

As observed by Cleland el ai. [17], the use of a 
proper finite difference method reduced the computer 
time required to obtain a heat conduction solution 
considerably. Therefore, a finite difference method 
was used for the present study. The objectives of this 
investigation were: (i) to develop a compute~zed 
method, which can be applied to general heat con- 
ducting phase change problems, for freezing/thawing 
simulation in an irregular food domain with realistic 
assumptions of food properties including change of 
volume (two dimensions), (ii) to verify the developed 
procedures by freezing/thawing experiments. 

MATERIALS AND METHODS 

Mathematical model development 
The governing partial differential equation gen- 

erally applicable to heat conduction in the anisotropic 
food and its corresponding initial and boundary con- 
ditions are shown below [3]. 

= ](dHPx) (aT/J.x) + W/‘~Y> (8 TPY)l/ 

Kww2 + w/~Y)*l. (4) 

Since there always exists a sharp peak in the apparent 
specific heat value at the initial freezing point of high 
moisture content materials due to phase change, inte- 
gration of dH/dT around the initial freezing point 
avoids missing the peak value. Equation (4) was also 
used in ref. [12] with good simulation results being 
reported. However, when the temperature gradient is 
very small (< 0.001 “C), C was obtained directly from 
the following empirical formula 1121: 

c= c, for T 2 Tsh 

C= C,i-.E/(T,,-T)“’ forT< T,,. (5) 

The empirical equations for thermal conductivity 
and density given in ref. [ 121 are also shown as 

Ii., = k,,+&,,(T--T,,) for T 2 T,, 

kx = k, + &sx(Tsh - T) 

Heat conduction equation. 

X~PC@T/&) = ~[x%&3T/8x)]+ -$x~k,(r’T/3y)] 

fort>0 and (x,~)EV (1) 

where p = 1 .O for axisymmetric heat conduction and 
x becomes the radial direction axis ; otherwisep = 0. It 
should be noted that C in equation (1) is the apparent 
specific heat which includes the latent heat of freezing 
or thawing. The following bounda~ condition, equa- 
tion (2), which is similar to the one considered in ref. 
[ 1 I] was applied. 

Boundary condition. 

k,zx d T/h + k, e,. 8 Tj8.v 

+(k~k,,)(T,,- Tsh)/(T,,- T) for T =Z Tsh 

k, = k,,+&,,(T- r,,) for T > Tsh 

k, = 6k, for T < Tsh 

where 

fi = k&,x 

P’PI 

P = Pr+‘%s@-sh- T) 

(6) 

for T 3 T,, 

= -h(T,-_~)-~~&(~--_)-_h,L(m-m,) 

for t > 0 and (x, y)oS. (2) 

Initial condition. 

+-(P, -p,)(T,,- TsJ(Tsw-- 73 for T < Tsh. (7) 

Equations (l)-(3) are difficult to solve since x and 
y are time dependent due to freezing or thawing 
change in the solution domain as mentioned 
previously. Therefore, they were expressed in terms of 
coordinates fixed to initial food volume, x,, and y,. 
The coordinate transformations are given below using 
Cartesian coordinates as an example 

dx = rl,, dx, ; dy = ljyo dy, and dz = qZ, dz, (8) 

where qx,, q_,,, and qZ, are the x-, y- and z-directional, 
linear expansion factors which are dependent on local 
temperature. 

Let 

T= T, fort=0 and (x,y)eVandS. (3) r”,,lvi.Y, = w ; %,I%, = v. 
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(lh,lP) = ~ml,,)3 

‘?! = [/‘(,, (cwp)l / i 

and 

U, ,, = oq,,: ‘I:,, = y,,; (9) 

Therefore. from equations (8) and (9). we obtain 

j‘ = u[p,,!‘(ptr,v)]’ ’ dj,;, I 

r = v[p”i’(p”‘V)]“3 cl;,,. 
j 

(10) 

Thus, the modified governing equation (for cylindrical 

coordinates : x0 replaced by Y” and J,, replaced by z”) 
is given as 

for t > 0 and (-xc,, v,,) E I/‘,,. (11) 

Boundmy condition. 

(li~,,,)k,,,e,~, i T!i;.u,, + (I /q,,,,)k, ,,e, ,, f?Tiijx,, 

= - h( T, - T., ) (convective term) 

- rrFt:( T;’ - r,“) (radiative term) 

- /7,,,L,(rn - m,,) (moisture loss) 

for t > 0 and (.x,,, .r,J E S,. (12) 

Initid condition. 

T = To for t = 0 and (s,,J’,)E V,, and S,,. (I 3) 

In order to facilitate the further calculation, those 
equations were converted to the dimensionless form. 

Let 

I:= (T-T,,,)i(T,,, -T,,); 4 =.x,/l; i =y,,/l; 

F,, = (Mi12; x(, = k,,l(p,C,); P,\, = k/k,, i 

PA, = k, /k,, : P,, = p/p, ; P, = C/c‘, : 

Bi = h//k,, : NR = crFx/l T,,, - T;,,) ‘,ik, / ; 

B,,, = kU~~,/Wr\ CL - T,,, )I ; 

L, =I,:L,; cD=mlm,; 

amd 

r?,,, = ;’ (or qV-,, = 7). 

Therefore. the following equations were obtained : 

governing equation 

boundary condition 

= -Hi(~~-L:;,)-NRI(~,+li,)“-((:,+C’,)’j 

-B,,rL,(+4.1): (15) 

initial condition 

c:(<. <. 0) = L’,,(,‘. ;). (16) 

The moisture content in most frozen foods is fairly 

high and a small fraction ofmoisture is lost (or gained) 
during freezing or thawing (i.e. water activity of 

food remaining at unity). It was assumed that the 
thermodynamic properties of water in the food were 
identical to the saturated pure water. Therefore. 
the following equations were used for the present 
work 1211. 

Latent heat of vaporization or sublimation 

I>!’ IO00 = 
/2500.8-2.3668T when T > Tlh 

I. 2837.0 when T < 7Y,,, 

(17) 

Water vapor pressure : 

when T > T,,, 

In (nr!lOOO) = -5674.5359, T 

i-6.3925247-0.9677843( 10 ‘)7 

+0.62215701(10 ~“)7-‘+0.20747825(10~‘)7+ 

+0.9484024(10 “)T4+4.1635019 In (T) (18) 

when T < ‘r,,, 

In (m 1000) = - 5800.2206:7 

+ 1.3914993-0.04860239T+0.41764768(10 ‘)T’ 

-0.14452093(10 ‘)T’+6.5459673 In (T). (191 

It should be mentioned that T in equations (17). 

(I 9) is in degree Celsius. 

NUMERICAL METHODS 

The solution domain was divided into non-uni- 
formly spaced finite difference grids in which the 

regions of steep temperature gradients were divided 
into fmer grids. An alternative directional implicit 
(ADI) [22] finite difference method was applied 
initially to solve equations (14)-( 16). However. tem- 
peratures at the boundary nodes on a curvilinear sur- 
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face contour converged to grossly incorrect solutions 

(i.e. temperature below the surrounding medium tem- 

perature during cooling treatment), no matter how 
small the ratio of Ax, At and k/q values in a con- 
vergence criterion of 0.01, a relative temperature 
difference of two successive iterations was used. To 
eliminate this problem, a finite volume approximation 
procedure was applied to each boundary node and a 

finite difference approximation procedure [23] to each 
internal node. 

There are two cases of boundary node arrange- 
ments which are sufficient to cover all different types of 
boundary contours (Fig. 1). The following equations 
were obtained through the consideration of energy 
balance in a finite volumetric element around a 
boundary node. 

Energy balance analysis at the boundary node 

Case 1 : (referred to Fig. 1). 

Rate of energy input - Rate of energy output 

= Rate of energy accumulation 

-k,Ay[(x-O,SAx)A0](aT/ax) 

-k>Ax(xAQ)(aT/8y)-{h(T,-T,)+aF@‘:-T,) 

+h,L(m-m,)}[(Ax2+Ay2)0~s(~A\B)] 

= 0.5(AxAy)(xAB)pC(8T/&). (20) 

When Ax is small and original coordinates (x0, y,) are 
used as the reference coordinates, then equation (20) 
can be converted to dimensionless form equation (21). 

Let 

(yAt)/[(yAl)‘+ (oyA[)‘]“-” = cos 0 = e, 

(yo~A[)/[(yA<)~ + (o~A[)*]‘.~ = sin 0 = e2 

where 0 is the angle between the normal directional 
outward axis and the x- or g-axis 

-[p,,e,lyl(au/a~)-[(P~,,K,.e,)I 

(ywK,,)l(au/ai)-si(u,- Ud 

-~~[(~,+~“)4-(~z+~“)41-~,~“(~-~,) 

= 0.51e, I(yA~)P,P,,(L?U/aF,) (x- or [-direction) 

Case 1: 

Side view 

Case 2: 

Top view 

AY 

FK. I. The controlled volume at the boundary node 
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01 

~tP~,c,/?~I(au/a~,-[(p,~K,,ez)/ 

(ywK,,)](dU/c;;)- Bi(U,- U;,) 

-NR[(Ci~+U,)4-(U,+Li,)41-B,,L,(~-~,) 

= O.Sle,l(ywAS)P,,P,(ariiaF,) (_Y- or [-direction). 

(21) 

C’use 2 : (rqferred to Fig. 1). 

-K,AJ$(.x-O.~AX)A~](S~/&Y) 

-[K,.Ax(xAO)(c?Tic’~‘)l~ 

+K,A-~(.~AB)(~T/~y)l,+,,l-jh(T,- r,) 

+oFc(T,?- T:)+Ir,,,L(m-rn,)}[A~~u(xA@] 

= (A.~Ay)(.xAfI)pC(H’/&). (22) 

When Ax is small, equation (22) becomes (dimen- 
sionless) 

-Bi(Ci,-U,)-NR[(U,+C/,)4-(I/e+1/,,)4] 

-B,,,L(+dd = (YAW’J’, (~~/~F,,) 

(x- or t-direction) 

or 

(y- or c-direction). (23) 

Equations (21) and (23), not equation (15), were 
used together with the governing equation and initial 
condition for numerical solutions. 

As stated previously, an AD1 method was used 
to solve equations (14). (16) and (21) or (23). The 
difference equations, which can be found elsewhere 
[24], were not shown in which the thermal conductivity 
and coordinate change were the average values of two 
adjacent nodes. 

Unfortunately, the unknown values of U in the boun- 
dary term for radiative heat transfer and moisture 
loss (equations (18) and (19)) are difficult to separate. 

Therefore, there are unknown temperature terms 
to be updated during the calculation. This problem 
can be solved with iteration without any difficulty. 
A similar principle was used in the t-directional 
integration. 

The grid nodal points for each row and column 
should be properly classified, since a different type of 
boundary node might need different treatment. Figure 
2 shows the two cases of arrangement for the <-direc- 

1 n 

Cast i 

12 3 4 5 6 . ..n 

Case ii 

FIG. 2. Classification of nodal points for X- or (-directional 
integration. Case i, all internal nodes except two end points. 
Case ii, all boundary nodes : upper, curvilinear boundary : 

lower, straight line boundary. 

tional integration : 

(i) there is one boundary point at each end (the 

typical type) ; 
(ii) all nodal points are boundary nodes where each 

point was treated as the ‘internal node’ except two 

end nodes. but the boundary condition was applied 
to each ‘internal node’. 

The same classification is applicable to the <- 
directional integration. The application of the 
stated methods resulted in simultaneous, first-order 
algebraic equations with a tridiagonal coefficient 
matrix the elements of which are functions of local 
temperature. The solution may be easily estimated 
through iterative computations [ 12,251. Updated 
nodal point temperatures were obtained through each 
iterative integration, the convergence criterion was 
a relative temperature difference of two successive 
iterative results at each time step. These integrations 
were in the forward finite difference form for first- 
order time derivative and the central finite difference 
form for the second-order space derivative. After all 
the <-directional integration was completed, the ;- 
directional integration was performed to update nodal 
temperatures after another F, increment by AFo. The 
procedures were repeated alternatively in the sub- 
sequent time steps until the final process temperature 
was reached. 
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k_ button radius _____i+( 

0.0 x 0.25 

It- stem radius _Y 

FIG. 3. Nodal point design for mushroom-shaped domain 
(one half). x-Coordinates are twice as large as their real 
size for better illustration. Point p is the location of the 

thermocouple. 

EXPERIMENTAL VERIFICATION 

The developed computer program was used to 
simulate heat conduction in a sample of mushroom 

or spheroidal shape. The nodal arrangements and 
sizes of each sample are shown in Figs. 3 and 4 
for the mushroom shape and spheroid, respectively. 

In order to verify simulation results, a Karlsruhe 
1261 food simulator was used since its thermo- 
physical properties are available and all the par- 
ameters for those formulae of temperature-depen- 
dent physical properties, equations (5)-(7) can be 
obtained from ref. [Ill. The simulator was made 
from crystallized methyl-cellulose gel (77 % moisture 
content). Molds for making mushroom-shaped and 
spheroidal samples were fabricated from the hy- 

drate of Gypsum powders. A polyethylene (PE) film 

(0.0254 mm) was used to wrap each sample in order 
to minimize moisture loss at the surface 

0.7 

Y 

0.0 

II I I I I I I IIII 

0.0 
x 1.0 

FIG. 4. Nodal point design for a spheroid domain (one 
quarter. v is the rotating axis). 

A wind tunnel (0.3 1 m diameter and 2.025 m long) 

was designed for this experiment in which a centrifugal 
fan, located at one end provided the desired forced air 

flow. The fan rotor (0.31 m diameter) has a maximal 
capacity of supplying 55 m3 min- ’ air flow. A sample, 
which had been placed in an incubator for 24 h to 
obtain a uniform initial temperature, was hung by 
thin thread in the middle of the wind tunnel 0.62 m 
from the outlet (the rotation axis of the sample was 
perpendicular to the air flow). A thermocouple (cop- 
per-constantan, 0.0762 mm diameter wire) which was 

calibrated with a mercury thermometer was placed at 
the geometrical center of a spheroid or a fixed location 
(Fig. 3) in a mushroom-shaped sample. 

For the freezing experiment, the whole wind tunnel 

unit was placed in a -2O.Of 1 .O”C walk in freezer 
available in the Food Science Department, Rutgers 

University. Temperature data were recorded in 1 or 2 
min intervals by an Esterline Angus model PD-2064 
digital recorder with O.l”C resolution. Each freezing 
experiment was terminated when the sample tem- 
perature reached - 15°C. The averaged superficial air 
velocity was measured by a KURZ portable Air Vel- 
ocity Meter 440 Series at the outlet of the wind tunnel 
column at five specific locations (one at the center and 
four at the mid-point between the center and tunnel 

wall separated by 90’). The velocity was 5.0 m s-‘. 
For the thawing experiment, similar procedures were 
applied. However, the samples were kept in a - 15°C 
freezing chamber to obtain uniform initial tempera- 
ture. Then, the wind tunnel was placed at a constant 
temperature environment (25.0 + 1 .OC). The exper- 
iments were terminated when the sample temperature 

reached 10°C. An average air velocity of 3.7 m s- ’ 
was used in the thawing of spheroids. The value of h, 

convective surface heat transfer coefficient, is depen- 
dent on the environmental conditions (air flow pattern 
and surface characteristics) and is difficult to measure 
accurately, therefore it was determined by a ‘curve 
fitting’ method. However, in the radiative heat trans- 
fer, the view factor (F) was set to 1.0 because of a 
small object in a large enclosure [27]. Furthermore, 

the emissivity of Tylose gel was assumed to be 0.95 
which is the emissivity of water at 0°C. An objective 
function used for the optimization or curve fitting 
was the sum of square differences (SS) between the 
experimental and simulation sample temperatures col- 
lected at I min intervals. An optimal h value was 

obtained by finding one specific h corresponding to 
the minimal SS value. This optimal h value was used 
to estimate the temperature history curve of another 

sample undergoing another similar freezing or thaw- 
ing experiment. Three experiments were formed for 
each sample and data were reproduced well. 

RESULTS AND DISCUSSIONS 

Although the value of h used in the numerical simu- 
lation was not directly measured, it is possible to justify 
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17 values used for spheroids by comparing the cal- 

culated /z through using the empirical equations pro- 
posed by Smith et d. [28] with the present ones. It is 
interesting to find that h values obtained from Smith PI 
crl.‘s formulae (convective film coefficients for acrylic 
plastic spheroids) with air velocities of 5.0 and 3.7 m 
s ’ are 32.6 and 25.5 W m ’ C ‘, respectively. The 

11 values used in freezing and thawing simulatjons of 
spheroids wet-c 37.3 and 27.0 W m ’ C ’ which 
arc close to calculated values within 15 and 6%. 
respectively. 

Figure 5 shows very good agreement between cxpcr- 
imental and theoretical process temperature history 

curves for the freezing of a mushroom-shaped sample. 
The errors in the precoohng peroid could be caused 
by the PE tilm which did not perfectly contact with the 
sample surface because of the complicated boundary. 
Figures 6 and 7 show the freezing and thawing results 
of a spheroidal sample. respectively. The temperature 

difference at the beginning of the tempering (freezing) 
period could be due to a possible error in the empirical 
formula Ibr estimating the enthalpy (or apparent 

specific heat). The maximal temperature differences 
between calculated and experimental data are 2.0 and 
3.2 C in the freezing of mushroom shape and 

spheroid, respectively. For spheroidal thawing. the 
maximal temperature difference is I .O ‘C. 

Since an analytical solution is very difficult to derive 
for a non-linear heat conduction equation and its 

corresponding initial and boundary conditions, a 
numerical method was considered. Unfortunately. 
there is no reasonable solution when the finite diffcr- 

ence method was applied no matter how small a time 
incrcmcnt was used. One of the unrealistic results 
is the calculated boundary nodal temperature being 
lower than thecoolingmedium temperature (or higher 

than the heating medium temperature in the thawing 
simulation). This problem could be caused by an unrc- 

alistic heat balance around each surface node on a 
curvilinear boundary when the finite difference 
approximation was applied since the traditional finite 
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FIG. 5. Experimental vs calculated data for mushrootn- 
shaped material (Tylose gel) during freezing process simu- 

lation. 
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FIG. 6. Experimental vs calculated data for the freeczing 
simulation of a spheroid at the thermal center 
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FIG. 7. Experimental vs calculated thermal center tcm- 
perature history curves for the thawing of a spheroid 

difference uses a rectangular approximation. The 
other problem is the temperature oscillation at the 
boundary nodes. 

However, good results were obtained after com- 
bining it with the heat balance method as described 
above. As for the grid nodal point designs for mush- 
room-shaped and spheroidal domains. it is important 
to make an arrangement that the nodal point spacings 
around the boundary should be small but large 
enough to save computer cost. Usually. 5% of the 
rotation axis length is adequate for obtaining a good 
solution. Moreover, the internal nodal point distance 
is not necessarily equal as shown. this kind of design 
will save computer CPU and give the flexibility 01 
nodal point arrangement. 

ltcrative computations were required at each time 
increment as stated before. A convergence criterion 
used for this iterative calculation was a relative differ- 
ence of two successive iterations. Temperatures esti- 
mated with convergence criteria of 1 .O and 0.1 O/o were 
almost identical to each other (the nodal temperature 
difference is less than 0.1% ). Therefore, a 1 .O % rela- 
tive difference was used for all the simulations. The 
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number of nodal points is another important factor 
which will affect the CPU requirement. An optimal 
number of nodal points for either mushroom shape 
or spheroid was found to be between 150 and 200 to 
discretize the sample domain. There was virtually no 
difference in estimated nodal temperature when a 
larger number of nodes was used. The time step for 
these simulations can be as large as 5 s at the initial 
step (can be increased by 4 times gradually as the 
process proceeds) and the CPU required is about 60& 
1000 s for one simulation using a VAX 8650. 

The freezing times of a mushroom-shaped sample 
were estimated with assumed volumetric and no volu- 
metric expansions (no density change). A percent 
difference was calculated from the simulation results 
(the freezing time with volumetric change less the one 
without volumetric change divided by the former). 
Figure 8 shows that the volumetric effect is about 
1.1% at low Biot number (0.1) and smoothly increases 
to about 2.2% as Biot number increases to 40.0 (the 
freezing time with the expansion is longer than that 
without the expansion). A possible reason for this 
phenomenon is as follows. 

With a large Biot number, a local volumetric change 
due to freezing proceeded faster from the surface 
inward as compared to a freezing process with a low 
Biot number. Therefore, the influence of volumetric 
change on freezing time is more significant for a high 
freezing rate although the influence is negligibly small 
for the practical purpose. 

An expansion factor in the axis of the spheroid was 
found to be about 2% when the geometric center 
reached -20°C based on the freezing simulation 
which resulted in a 6.12% volumetric expansion. 
Since the freezing volumetric expansion of pure water 
is about 9%) the 6.12% calculated result for a 77% 
moisture content material is reasonable. 

CONCLUSION 6. 

A mathematical model with volumetric changes 
during a phase change (freezing/thawing) process was 7. 

8. 

9. 

10. 

11. 

12. 

2.4 
1 

Biot number 

FIG. 8. The volumetric effect on freezing time calculation 
(Tylose gel, mushroom shape, 77% moisture, for tem- 

perature down to - lO.O”C). 

formulated by modifying the heat conduction partial 
differential equation. To solve this model numerically, 
a new numerical scheme for an irregular domain was 
developed by applying the finite difference and finite 
volume heat balance methods. The simulation results 
for the freezing of mushroom-type and freezing/ 
thawing of spheroid samples show very good agree- 
ment with the experimental data. The influence of the 
volumetric expansion effect on freezing time esti- 
mation of high moisture content food materials was 
about 2% which is not significant for the practical 
purpose. 

The developed computer package can be applied to 
general heat conduction processes with phase change 
(solidification and melting) and applied to materials 
of high moisture content thermal processes. 
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SIMULATION PAR DIFFERENCES FINIES DE LA CONDUCTION THERMIQUE AVEC 
CHANGEMENT DE PHASE DANS IJN DOMAINE IRREGlJLIER ET AVEC CHANGEMENT 

DE VOLUME 

Resume--Un mod& mathCmatique incluant It’s changements de volume pour la cong&tion d’alimcnt est 
obtenu en modifiant l’kquation g&n&ale de la conduction thermique. parabolique aux dtrivees partielles. 
La forme de l’aliment est supposke &tre axiale avec un contour irrCgulier en section droite. Les coordonnCes 
sont fixCes au volume initial par une transformation de coordonntes approprite. A cause de la forte 
variation des propri&t& avec la temptrature pendant le changement de phase, les tempiratures nodales 
sont rCsolues numtriquement par une mkthode g&&ale implicite aux diffkrences finies, tandis qu’une 
mkthode de bilan thermique est appliquke aux frontitres des noeuds avec des conditions aux limites d’espkce 
quelconque. lJne mtthode de calcul numtrique est d&velopp&e et elle est verifiee expirimentalement par un 

probltme gknCral de changement de phase (solidification/fusion). 

SIMULATION DER W;iRMELEITUNG MIT PHASENWECHSEL IN EINEM 
UNREGELMiiSSIG GEFORMTEN LEBENSMITTEL MIT VOLUMEN;iNDERLIN<i 

Zusammenfassung--Ein mathematisches Modell, das die VoIumfn;inderung wiihrend des Gct’riercns und 
des Auftauens von Lebensmitteln beriicksichtigt, wird durch Modifiziercn der allgemeincn partiellen 
parabolischen Differentialgleichung der Warmeleitung erhalten. Die Gestalt dcs Lebensmittcls w/ird als 
Rotationskiirper mit unregelmiil3iger Kontur angenommcn. Die Koordinaten sind mit dem urspriinglichen 
Lebensmittelvolumen iiber eine geeignete KoordinatelltransforIllation verkniipft. Aufgrund der starken 
Temperaturabhgngigkeit der Lebensmitteleigenschaften wahrcnd dcs Phasenwechsels werden die Tcn- 
peraturen der Knotenpunkte numerisch mit einem allgemeinen implizlten Differenzenterfahren herechnet. 
An den Randknotenpunkten wird hingegen eine Warmebilanzmethodc mit beliebiger Art \on Rand- 
bedingungcn angewandt. Es bird eine rcchnerunterstiitzte numerische Simulation entwickclt und cxper- 
imentell fiir ein allgemeincs W2rmeleitungsproblem mit Phasenuechsel (Erstarren:Schmelzen) vcrifizicrt. 

MCIIOJIb30BAHHE METO& KOHEYHbIX PA3HOCTEn &JUI MO~EJIHPOBAHMR 
TEIWIOITPOBO~HOCTA IIPki HAJIkigkiR @A30BOI-0 I-IPEBPAwEHWfi B SACTrCrqAX 

Atmoraunn-B pe3ynbTaTe Mo&mKamia o6mero napa6onaqecKoro ypaaHe"m TennonpoBon"ocm 

nonyveHa MaTeMaTmecKaK MOLWI~, ynaTbmamwan o65ermbte 113MeHe~m npa 3aMopazmsaHaa mu 

oma"Ba"m ner.ueBblx npoflyrros. gacruua n"~esbm np0ny~~0~ paccMaTpsiBaeTcK KaK Ten0 Bpalue- 

HAS c nO,E~YHbIM CtYVZHU~M HWIpaBHnbHOfi (POPMbL c IIOMOIUbH) lIpOBeneH"lI COOTBeTCTB~IW~O 

npCO6pa30BaHWI BBOnSTcX KOOpmHaTbI, cBI13aHHbIe c HaWJIbHblM 06lA?MOM. nOCKOnbKy CBOkTBa 

VaCTHUB~,,OIJe~+a3OBOrO ll~BpaUW"lm B3HaSHTeJlbHOfiCTeneHU3aBACIIT OTTeMllepaTypbI, ,‘paBHe- 

HRIl PeluaIOTCK 9~CJKS5HO KOHe4HO-Pa3HOCTHbIM MeTOLIOM C HeKBHOi-4 CXeMOii, B TO BpMfl KBK MeT0J.l 

TeIL”OBOrO Ganama HCIIOJIb3yeTCK B WaHH'IHbIX y3naX CeTKH IIp" n106hoc ~aHH'"ibIX yCJIOBRSlX.Pa3pa- 

6oTan si 3KcnepeMe"Tanb"o nonTsepxmee MeTo~=nicnennoro Mo~enkiposansn o6uefi 3anaIaYn Tennon- 

p0~0ru10cT" np" (Pa30BOMnpeBpaueHHIl(3aTBepneBa""e/TaK""e). 


