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Finite difference simulation for heat conduction
with phase change in an irregular food domain
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Abstract—A mathematical model including the volumetric changes for food freezing or thawing is obtained
by modifying the general heat conduction parabolic partial differential equation. The shape of food is
assumed to be a body of rotation with an irregular cross-sectional contour. Coordinates are fixed to the
initial food volume through a proper coordinate transformation. Due to the highly temperature-dependent
food properties during phase change, the nodal temperatures are solved numerically by a general implicit
finite difference method while a heat balance method is applied to boundary nodes with any kind of
boundary conditions. A computerized numerical simulation method is developed and verified exper-
imentally for a general heat conduction phase change (solidification/melting) problem.

INTRODUCTION

TRANSIENT heat conduction involving selidification
and melting is important in many engineering appli-
cations, e.g. food freezing and thawing, ground freez-
ing and metal casting. The exact solution of such a
problem is difficult because of the moving interface
between the solid and liquid phase when latent heat
is absorbed or released. Although there are many
methods available for solving these phase change or
‘moving boundary’ problems, they are usually only
applicable to specific cases such as in an infinite or
semi-infinite domain with simple initial and/or bound-
ary condition [1-3]. When the material physical prop-
erties are functions of temperature, the analytical solu-
tions for a finite irregular domain are almost imposs-
ible to obtain.

The numerical solutions (finite difference, finite
element and boundary element methods) of heat con-
duction processes with phase change and with non-
linearity of material properties also present some
difficulties. Lynch and O'Neil [4], and Yoo and
Rubinsky [5] used a time-variable mesh finite element
method, which explicitly traced the interface position,
to solve the phase change problem. Although, the
time-variable mesh approach often offers good accu-
racy, it is limited to simpler geometries. The finite
difference solution of a heat conduction equation is
usually confined to simple shape domains. Pham [6]
proposed a fast, unconditionally stable finite differ-
ence scheme which avoids the jumping of the latent
heat peak (temperature method with large time step)
and eliminates the convergence problem and iterative
procedures if enthalpy methods with explicit and
implicit schemes were used, respectively. Although
the finite element method is more flexible for an ir-
regular domain than the finite difference method,

Shamsundar and Rooz [7] point out that the computer
time required by the finite element method is three
times that by the finite difference method in the one-
dimensional moving boundary case (freezing of a
saturated liquid with constant wall heat flux). The
advantages and disadvantages of both numerical
methods for solving the moving boundary problems
are also given and will not be repeated here. Recently,
Saitoh and Kato [8] introduced a random point
method (RPM) which utilizes randomly generated
points around a pivotal point to formulate the govern-
ing equations. They claimed that no mesh generation
is necessary and it can be applied to the three-dimen-
sional moving boundary problem.

Many researchers have used numerical methods to
solve heat conduction equations for freezing and
thawing time estimation or process simulation in
which the food properties are temperature dependent.
Fleming [9] proposed a finite difference computer
algorithm to simulate the food freezing processes
which can be applied to irregular shapes. Unevenly
discretized elements and stepwise constant thermal
diffusivities over certain temperature intervals were
applied. However, there was no report of detailed
simulation results for irregular food. Purwadaria and
Heldman [10] solved the heat conduction equation
using the finite element method (two-dimensional sim-
plex triangular elements) to simulate heat transfer in
elliptical and trapezoidal shapes. They used a mass or
area average enthalpy criterion to solve the equation.
A generally applicable computer program was
developed on ref. [11] to estimate heat transfer in an
irregular shaped food undergoing freezing or thawing
by using isoparametric finite elements. Succar
and Hayakawa [12], Bonacina and Comini [13],
Mannapperuma and Singh [14], Pham [15], and
Cleland and Earl [16] also showed the freezing results
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NOMENCLATURE
Biot number [ -] 7,.  reference initial temperature, 281.15 K
dimensionless modified mass transfer T.. freezing point of pure water [K]
Biot number as defined [—]} i time [s)
apparent specific heat [J kg™' K '] U dimensionless temperature [~ ]

empirical constant for apparent specific
heat as defined [T kg™ ' K ]
x-directional cosine of an outward
direction normal to boundary surface

&

e,, ¢, yp-directional cosine of an outward

direction normal boundary surface

]

U0 T (Te—T0 ]

¥ food volume [m*]

Y, food volume at its initial temperature
state [m7]

x, ¥,z coordinates as functional of local
temperature {m]
vy, Py reference coordinates corresponding to

the initial food temperature [m].

Greek symbols

F view factor [-—]

F, dimensionless process time as defined

H enthalpy of fusion [J kg ']

h convective heat transfer coefficient
Wm 2K

h,, convective mass transfer coefficient

[(kg of water)s ' m~?Pa ']
k., k, thermal conductivity of food in x- or 1-
direction[Wm™' K ']
k.. k. values of food at unfrozen
state [Wm 'K '}

kl\-kl\

k... k. k.. k, values at refcrence
temperature, 233.15 K

L latent heat of water vaporization or
sublimation [J kg ']

L, LiL[-]

l characteristic length of food [m]

m saturated pressure of water vapor at the

food surface {Pa]

m, partial pressure of water vapor in the
surrounding medium [Pa]

NR  dimensionless radiative heat transfer
coefficient as defined [—]

P, dimensionless apparent heat capacity
[

Do dimensionless density, p/p. [—]

D dimensionless thermal conductivity in x-
direction [—]

Dis dimensionless thermal conductivity in y-
direction [—]

S food surface {m?)

S empirical constant as defined
[kgm=? K™

Si1.. S, empirical constants for x- and

v-directional thermal conductivity
estimation, respectively, as defined

s 'm *K 1]

S... empirical constant as defined
Ps 'm K

So food surface at its initial temperature
[m-]

T temperature [K]

T, reference surrounding medium
temperature, 233.15 K

o, thermal diffusivity at T, [m~ s '}

B x-directional expansion factor [—]

) ratio of x-directional thermal
conductivity to y-directional one [—]

& emissivity of material [ |

(X, 1. 2o)  directional linear expansion

factors in three directions [--]
(S angle between normal directional
outward axis and x- or £-axis

Al radius of & small controlled volume [-—]

v ratio of z- to x-directional expansion
factor in Cartesian system [-—]

£, dimensionless coordinates
corresponding to x and y [-—]

14 density as functional of temperature
kgm™]

G Stefan—Boltzmann constant
Us 'm K ¥

O] dimensionless parameter for m [}

) ratio of y- to x- (or z- to r-)directional
expansion factor [ ].

Subscripts

a ambient

¢ specific heat capacity

d density

¢ heat sink

1 food property at unfrozen state

r reference temperature, 233.15 K (or
—40°C)

s surface

sh initial freezing point of food

x. & x-or -axis

v, {  v-or {-axis

0 initial food temperature.

Superscripts

ne empirical constant for apparent specific
heat as defined [—]

P index of y-axis rotation [--].
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using finite difference techniques in simple shaped
foods. Cleland er al. [17] reported that the computer
time required for the simulation of a rectangular brick
by the finite element method (7 % 7 x 7 node grid with
216 evenly sized, eight-node, linear isoparametric
elements} was at least ten times greater than that for
the finite difference method (9 x 9 x 9 evenly spaced
node grid) according to their food freezing simulation.

Welty [18] recommended the application of a heat
balance method together with a traditional finite
difference technique for freezing and thawing process
simulations. Rosenau [19] found that ten nodal points
are sufficient for the simulation of one-dimensional
freezing time estimation by considering the heat
balance of each shell volume of an infinite cylinder.
However, there is no one taking into account the
volumetric change in the food freezing/thawing simu-
lation research.

As observed by Cleland er al. {17)], the use of a
proper finite difference method reduced the computer
time required to obtain a heat conduction solution
considerably. Therefore, a finite difference method
was used for the present study. The objectives of this
investigation were: (i) to develop a computerized
method, which can be applied to general heat con-
ducting phase change problems, for freezing/thawing
simulation in an irregular food domain with realistic
assumptions of food properties including change of
volume (two dimensions), (ii) to verify the developed
procedures by freezing/thawing experiments.

MATERIALS AND METHODS

Mathematical model development

The governing partial differential equation gen-
erally applicable to heat conduction in the anisotropic
food and its corresponding initial and boundary con-
ditions are shown below {3].

Heat conduction equation.
d 0
x?pC(aT/ot) = é;[x"kx(éT/ax)]-i— a[x”ky(éTf’ay)}

fort>0 and (x,y)eV ¢))

where p = 1.0 for axisymmetric heat conduction and
x becomes the radial direction axis ; otherwise p = 0. It
should be noted that C in equation (1) is the apparent
specific heat which includes the latent heat of freezing
or thawing. The following boundary condition, equa-
tion (2), which is similar to the one considered in ref.
[11] was applied.

Boundary condition.
k.e 0Tj0x+k,e, 0T/Cy
= — (T, ~T,)—oFe(T} — T$)~h, L(m—m,)
fort>0 and (x,»)eS. (2
Initial condition.

T=T, fort=0 and (x,y)e¥VandS. (3)
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No supercooling was assumed in the above equa-
tion since freezing of most foods proceed at a slow
rate. All physical properties are assumed to be tem-
perature dependent. The coordinates, fixed to current
food volume, x and y, are time variable because of a
volumetric change due to freezing and thawing. In
order to estimate properly the apparent specific heat
of a food material, the equation proposed by Comini
and Del Giudice [20] by using an enthalpy gradient
was applied and is shown below

C=dH/dT
= [(0H|0x)(0T|0x)+ (OH|0y)(8T/0y))/
[(0T/6x)* +(@T/9y)’).  (4)

Since there always exists a sharp peak in the apparent
specific heat value at the initial freezing point of high
moisture content materials due to phase change, inte-
gration of dH/dT around the initial freezing point
avoids missing the peak value. Equation (4) was also
used in ref. [12] with good simulation results being
reported. However, when the temperature gradient is
very small (<0.001°C), C was obtained directly from
the following empirical formula [12]:

C=C, forTz T,
C=CHE/(T,—Ty forT<T,. (5)

The empirical equations for thermal conductivity
and density given in ref. [12] are also shown as

ky =kt ST~ Ty) for T2 Ty
kx = er+ Sksx(Tsh - T)
+(klx_er)(Tsw_Tsh)/(T'sw'“T) fOI‘ T< Tsh

ky =k, 4 Se (T—Tg) forT> Ty,
k, = ok, forT< Ty,
where

0= kiylki (6)
p=p for T2 T,

p = pt ST ~T)
+(pl_pr)(Tswash)/(Tsw_'n fOI' T< 7-'sh' (7)

Equations (1)-(3) are difficult to solve since x and
y are time dependent due to freezing or thawing
change in the solution domain as mentioned
previously. Therefore, they were expressed in terms of
coordinates fixed to initial food volume, x, and y,.
The coordinate transformations are given below using
Cartesian coordinates as an example

dx =, dx,; dy= M, 4y and dz=gn, dz, (8)

where 5, , #,, and 7. are the x-, y- and z-directional,
linear expansion factors which are dependent on local
temperature.

Let

Ronffley = @5 R (Mo = V.



{poip) = (“V('l\\,)z
0= [pal(ovp)] !
and

Moy = W0 o, = VI, (9

Therefore, from equations (8) and (9). we obtain

~

T J [poi(pem)]" duy,

”

y= J olpo/(pav)}* dy,

o= Jv[p,,/(pwv)]"3 dz,. (10)
Thus, the modified governing equation (for cylindrical
coordinates : x, replaced by r, and y, replaced by z,)
is given as

7 \p
QJU\”d.\‘(.) pClaTicH
% ) \/’/\'\‘ (’ﬁr
=(lin.)- dy ) T
( r,\“)['\‘” L<JYI ! \(]/ ., (—'?XUJ
ooyt
5 dx b -
Yo LL Mo ¢ He, (']}’(,‘

+(1’/”"“)i : [

forr>0 and (xgya)eVo.

Boundary condition.

(In, k. e,, €T/0xo+ (1, )k, e, ETicr,

Yo

= —-WT,—T,) (convective term)

—aFe(T? T4 (radiative term)

—h, L{m—m,) (moisturcloss)

fort>0 and (x4 ¥ €S, (12)

Initial condition.

T=T, fort=0 and (13)

In order to facilitate the further calculation, those
equations were converted to the dimensionless form.
Let

(xpyo)e V,yand S,.

U= (T—-TOUTw—T,): &=x/l; {=yy/l;
Fo= (a0l o =k /(p,C); Pio=kyjke:
P =kjk.: P,=plp.;; P, =C/C.:
Bi=hijk... NR=oaFl(T,, —T,) /k  :

B, = h,LIm [[K (T, — T,
L, =L/L ;. ®=mim, .
and

e, =7 (007, = 7).

S. SHeeN and K. HAYAKAWA

Therefore, the following equations were obtained :
governing equation

d "dﬁ)P{/Pxf-cnﬁfza,)zL“ pac) T ‘

ANRY IS

Lk d) N
wK, o} T o ol ) )

boundary condition

[il\,\ €

K. P,
K. .y
= —Bi(U,— U) = NR[(U,+ U)* — (U4 U.)"]

~B,L(d—¢,): (15

(cuiedH+ e-(eU/E)

initial condition
U(E.00) = Ug(S.9) (16)

The moisture content in most frozen foods is fairly
high and a small fraction of moisture is fost (or gained)
during freezing or thawing (i.e. water activity of
food remaining at unity). It was assumed that the
thermodynamic properties of water in the food were
identical to the saturated pure water. Therefore.
the following equations were used for the present
work [21].

Latent heat of vaporization or sublimation

L1000 = { 2500.8—2.3668T when T = T, |
2837.0 when 7 < T,
(17N
Water vapor pressure:
when 7> T,
In (m/1000) = —5674.5359/T
+6.3925247 —0.9677843(10 )T
+0.62215701(10~ )T +0.20747825(10~ %17
+0.9484024(107 ' )T* +4.1635019 In (1) (18)
when 7T< T,
In (m1000) = — 5800.2206, T
+1.3914993 —0.048602397 +0.41764768(10 )T~
—0.14452093(10" ) T7 +6.5459673 In (T). (19

1t should be mentioned that T in equations (17)-
(19) is in degree Celsius.

NUMERICAL METHODS

The solution domain was divided into non-uni-
formly spaced finite difference grids in which the
regions of steep temperature gradients were divided
into finer grids. An alternative directional implicit
(ADI) [22] finite difference method was applied
initially to solve equations (14)-(16). However. tem-
peratures at the boundary nodes on a curvilinear sur-



Finite difference simulation for heat conduction

face contour converged to grossly incorrect solutions
(i.e. temperature below the surrounding medium tem-
perature during cooling treatment), no matter how
small the ratio of Ax, Ar and k/cp values in a con-
vergence criterion of 0.01, a relative temperature
difference of two successive iterations was used. To
eliminate this problem, a finite volume approximation
procedure was applied to each boundary node and a
finite difference approximation procedure [23] to each
internal node.

There are two cases of boundary node arrange-
ments which are sufficient to cover all different types of
boundary contours (Fig. 1). The following equations
were obtained through the consideration of energy
balance in a finite volumetric element around a
boundary node.

Energy balance analysis at the boundary node
Case 1 : (referred to Fig. 1).
Rate of energy input — Rate of energy output

= Rate of energy accumulation

Case 1:

AX2 Axi
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— ke AY[(x—0.5AX)A0) (3T /6x)
— ki, Ax(xA0) @T)3y) — {h(T, — T.)+ aFe(T* — T?)
+ b, Lim—m ) (Ax® + AyH)™* (xAB)]
— 0.5(Ax Ay) (xAB)pC(BTI31).  (20)

When Ax is small and original coordinates (x,, y,) are

used as the reference coordinates, then equation (20)

can be converted to dimensionless form equation (21).
Let

(YAO/[(YAL)? + (yAD)*]** = cos O = e,
(Y@AD/[(AE)? + (wyAL)*]™* = sin© = e,
where © is the angle between the normal directional

outward axis and the x- or £-axis
—[Pever/7)QUIOE) —[(Pe, Koyes)!
(oK )(U/ol)—BiU, - U,)
—NR(U;+U)*~(U.+U,)*1- B, L (¢~ ¢.)
= 0.5le,|(yAE)P,P.(GUJOF,) (x- or &-direction)

Top view

Side view

FiG. 1. The controlled volume at the boundary node.



or
=P 71BU/6E) — (P Ke€2)]

(oK. )(oUf6C)— Bi(U,— U,)

= NR{(U,+U)*~(U.+U,)*|= B, L, (¢~ .)

= 0.5le,|(ywAEP,P(OUIOF,) (y- or {-direction).

(2h
Case 2: (referred to Fig. 1).
— K Ay[(x—0.5Ax)A0}(0T/0x)
—[K, Ax(xA0) (8T/6y)|,
+ K, Ax(xA0) (OT/ay), 4] {M(T ~T,)
+oFe(T} — T+ h, Lim — m,)  {Ay(xA0)]
= (Ax AyY(xAB)pC(8T/Cr). (22)

When Ax is small, equation (22) becomes (dimen-
sionless)

Pls <5U AS(K,\ 2 [P, (oU
7 66 w er aé Y a{

hBl(U\ - U‘\)—NR[(U\—F UV)A_(UC+ U\')4J
_Bva((»b_¢u) = (}yAé)Pz/P((EU/(;F())

(x- or &-direction)

or

_(wAv)i Pk.r 6U PA\Kr\ (’QLI
Yae| v \aE) | ek, \a

~ Bi(U,— U,)~ NR[(U,+ U))* —(U.+ U,)*]
=B, L (=) = GwA)P,POU[CF,)

(y- or {-direction). (23)

Equations (21) and (23), not equation (15), were
used together with the governing equation and initial
condition for numerical solutions.

As stated previously, an AD] method was used
to solve equations (14), (16) and (21) or (23). The
difference equations, which can be found elsewhere
[24], were not shown in which the thermal conductivity
and coordinate change were the average values of two
adjacent nodes.

Unfortunately, the unknown values of U in the boun-
dary term for radiative heat transfer and moisture
loss (equations (18) and (19)) are difficult to separate.
Therefore, there are unknown temperature terms
to be updated during the calculation. This problem
can be solved with iteration without any difficulty.
A similar principle was used in the ¢&-directional
integration.

The grid nodal points for each row and column
should be properly classified, since a different type of
boundary node might need different treatment. Figure
2 shows the two cases of arrangement for the £-direc-

S. SHEEN and K. Havyakawa

,_.
1~
o
"y
Ol

2}

/—‘\
~—l

Case i

Case it

FiG. 2. Classification of nodal points for x- or {-directional

integration. Case 1, all internal nodes except two end points.

Case i, all boundary nodes: upper, curvilinear boundary :
lower, straight line boundary.

tional integration :

(i) there is one boundary point at cach end (the
typical type);

(i1) all nodal points are boundary nodes where each
point was treated as the ‘internal node’ except two
end nodes. but the boundary condition was applied
to each ‘internal node’.

The same classification is applicable to the (-
directional integration. The application of the
stated methods resulted in simultaneous, first-order
algebraic equations with a tridiagonal coefficient
matrix the elements of which are functions of local
temperature. The solution may be easily estimated
through iterative computations [12,25]. Updated
nodal point temperatures were obtained through each
iterative integration, the convergence criterion was
a relative temperature difference of two successive
iterative results at each time step. These integrations
were in the forward finite difference form for first-
order time derivative and the central finite difference
form for the second-order space derivative. After all
the &é-directional integration was completed, the (-
directional integration was performed to update nodal
temperatures after another F;, increment by AF,. The
procedures were repeated alternatively in the sub-
sequent time steps until the final process temperature
was reached.
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t¢——— button radius ——————3|

—

g
(=]

=]

K—— JySioy weys —f— Sy uonng ——}
«

0.0
0.0 X

0.25
le—— stem radius —>{

Fig. 3. Nodal point design for mushroom-shaped domain

(one half). x-Coordinates are twice as large as their real

size for better illustration. Point p is the location of the
thermocouple.

EXPERIMENTAL VERIFICATION

The developed computer program was used to
simulate heat conduction in a sample of mushroom
or spheroidal shape. The nodal arrangements and
sizes of each sample are shown in Figs. 3 and 4
for the mushroom shape and spheroid, respectively.
In order to verify simulation results, a Karlsruhe
[26] food simulator was used since its thermo-
physical properties are available and all the par-
ameters for those formulae of temperature-depen-
dent physical properties, equations (5)—(7), can be
obtained from ref. [11]. The simulator was made
from crystallized methyl-cellulose gel (77 % moisture
content). Molds for making mushroom-shaped and
spheroidal samples were fabricated from the hy-
drate of Gypsum powders. A polyethylene (PE) film
(0.0254 mm) was used to wrap each sample in order
to minimize moisture loss at the surface.

T T T
N \
y N
\
0.0 |
0.0 1.0

X

FiG. 4. Nodal point design for a spheroid domain (one
quarter, v is the rotating axis).
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A wind tunnel (0.31 m diameter and 2.025 m long)
was designed for this experiment in which a centrifugal
fan, located at one end provided the desired forced air
flow. The fan rotor (0.31 m diameter) has a maximal
capacity of supplying 55 m* min~" air flow. A sample,
which had been placed in an incubator for 24 h to
obtain a uniform initial temperature, was hung by
thin thread in the middle of the wind tunnel 0.62 m
from the outlet (the rotation axis of the sample was
perpendicular to the air flow). A thermocouple (cop-
per—constantan, 0.0762 mm diameter wire) which was
calibrated with a mercury thermometer was placed at
the geometrical center of a spheroid or a fixed location
(Fig. 3) in a mushroom-shaped sample.

For the freezing experiment, the whole wind tunnel
unit was placed in a —20.04+1.0°C walk in freezer
available in the Food Science Department, Rutgers
University. Temperature data were recorded in 1 or 2
min intervals by an Esterline Angus model PD-2064
digital recorder with 0.1°C resolution. Each freezing
experiment was terminated when the sample tem-
perature reached — 15°C. The averaged superficial air
velocity was measured by a KURZ portable Air Vel-
ocity Meter 440 Series at the outlet of the wind tunnel
column at five specific locations (one at the center and
four at the mid-point between the center and tunnel
wall separated by 90°). The velocity was 5.0 m s~ '
For the thawing experiment, similar procedures were
applied. However, the samples were kept in a —15°C
freezing chamber to obtain uniform initial tempera-
ture. Then, the wind tunnel was placed at a constant
temperature environment (25.0+1.0°C). The exper-
iments were terminated when the sample temperature
reached 10°C. An average air velocity of 3.7 m s~
was used in the thawing of spheroids. The value of 4,
convective surface heat transfer coefficient, is depen-
dent on the environmental conditions (air flow pattern
and surface characteristics) and is difficult to measure
accurately, therefore it was determined by a ‘curve
fitting” method. However, in the radiative heat trans-
fer, the view factor (F) was set to 1.0 because of a
small object in a large enclosure [27]. Furthermore,
the emissivity of Tylose gel was assumed to be 0.95
which is the emissivity of water at 0°C. An objective
function used for the optimization or curve fitting
was the sum of square differences (SS) between the
experimental and simulation sample temperatures col-
lected at 1 min intervals. An optimal 4 value was
obtained by finding one specific 4 corresponding to
the minimal SS value. This optimal 4 value was used
to estimate the temperature history curve of another
sample undergoing another similar freezing or thaw-
ing experiment. Three experiments were formed for
each sample and data were reproduced well.

RESULTS AND DISCUSSIONS

Although the value of 4 used in the numerical simu-
lation was not directly measured, it is possible to justify
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/i values used for spheroids by comparing the cal-
culated 4 through using the empirical equations pro-
posed by Smith er «l. [28] with the present ones. It is
interesting to find that & vaiues obtained from Smith es
al’s formulae (convective film coefficients for acrylic
plastic spheroids) with air velocities of 5.0 and 3.7 m
s 'are32.6 and 25.5Wm * C ', respectively. The

A values used in freczing and thawing simulations of
snheroids were 37.3 and 270 Wm 2001 Wwhich

wWlTre ~ WiNiCh

are close to calculated values within 15 and 6%,
respectively.

Figure 5 shows very good agreement between exper-
imental and theoretical process temperature history
curves for the freezing of a mushroom-shaped sample.
The errors in the precooling peroid could be caused
by the PE film which did not perfectly contact with the
sample surface because of the complicated boundary.
Figures 6 and 7 show the freezing and thawing results
of a spheroidal sample, respectively. The temperature
difference at the beginning of the tempering (freczing)
period could be due to a possible error in the empirical
formula for estimating the enthalpy (or apparent
specific heat). The maximal temperature differences
between calculated and experimental data are 2.0 and
3.2°C in shape and
spheroid, respectively. For spheroidal thawing, the
maximal temperature difference is 1.0°C.

Since an analytical solution is very difficult to derive
for a non-linear heat conduction equation and its
initial and boundary conditions, a

) T f SO P ) T
LIIC  TTCCZIN1E Ol USIoomn

corresponding
numerical method was considered. Unfortunately,
there is no reasonable solution when the finite differ-
ence method was applied no matter how smail a time
increment was used. One of the unrealistic results
is the calculated boundary nodal temperature being
lower than the cooling medium temperature {or higher

than the heating medium temperature in the thawing

]’\\7 an unre-

G oyahul

alistic heat balance around each sur{ace node on a
curvilinear boundary when the finite difference
approximation was applied since the traditional finite

simulation). This nroblem could he caus

SHTUIaiion ;. 1 101s proOiCiil CoWG v Lald

30
Pn, Amblent t temp. = -17.8+ 1.0 (°C)
20 1 h =48.21 w/im”2 K)
%) Button Dia. = 60 mm
& %, Button Height = 30 mm
’ + Stem Dia. = 30 mm
5 104 s, Stem Height = 30 mm
Z
E LN
@
Lo
13}
=
+ Experiment
-101 X .
——Simulation
-20 T T
0.0 0.5 1.0 1.5

Freezing time {hr)

FiG. 5. Experimental vs calculated data for mushroom-
shaped material (Tylose gel) during freezing process simu-
lation.
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30 r
Ambient temp. =-21.7 £ 0.5 ('C)
201 Char, Length = 36 mm
= h =37.3 W/(m*Z K}
e
© 10
|
g
2 o
E +
'OJ
o + Experiment
-101 Simulation ¢+
-20 — T T
0.0 0.5 1.0 1.5 2.0
Freezing time (hr)
FiG. 6. Experimental vs calculated data for the freczing

simulation of a spheroid at the thermal center.

30
4 Ambient temp. =26.11 0.5 (°C}
20 Char. Length = 36 nun *"f’
o) h = 27.0 W/(m*2 K)
& 10
2
g
ST &
5
= ’
-10 ‘/ + Experiment
— Simulation
-20 —— T T
0.0 0.5 1.0 1.5 2.0

Thawing time (hr)

F1G. 7. Experimental vs calculated thermal center tem-
perature history curves for the thawing of a spheroid.

difference uses a rectangular approximation. The
other problem is the temperature oscillation at the
boundary nodes.

cand reciilie s ahtainad afften ~om
g00d resuits werc oovtainea alter com-

However,
bining it with the heat balance method as described
above. As for the grid nodal point designs for mush-
room-shaped and spheroidal domains, it is important
to make an arrangement that the nodal point spacings
around the boundary should be small but large
cnough to save computer cost. Usually, 5% of the
rotation axis length is adequate for obtaining a good
solution. Moreover, the i
is not necessarily equal as shown, this kind of design
will save computer CPU and give the flexibility of
nodal point arrangement.

Iterative computations were required at each time
increment as stated before. A convergence criterion
used for this iterative calculation was a relative differ-
ence of two successive iterations. Temperatures esti-

ed with convereence criteria of 1.0 and 0.1% were
mated with convergence criteria of ere

almost identical to each other (the nodal temperature
difference is less than 0.1%). Therefore, a 1.0% rela-
tive difference was used for ali the simulations. The

e ittarimal na ol matnt dictanen
LhaC HNCrndar 1104di polit Qidiatce
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number of nodal points is another important factor
which will affect the CPU requirement. An optimal
number of nodal points for either mushroom shape
or spheroid was found to be between 150 and 200 to
discretize the sample domain. There was virtually no
difference in estimated nodal temperature when a
larger number of nodes was used. The time step for
these simulations can be as large as 5 s at the initial
step (can be increased by 4 times gradually as the
process proceeds) and the CPU required is about 600
1000 s for one simulation using a VAX 8650.

The freezing times of a mushroom-shaped sample
were estimated with assumed volumetric and no volu-
metric expansions (no density change). A percent
difference was calculated from the simulation results
(the freezing time with volumetric change less the one
without volumetric change divided by the former).
Figure 8 shows that the volumetric effect is about
1.1% at low Biot number (0.1) and smoothly increases
to about 2.2% as Biot number increases to 40.0 (the
freezing time with the expansion is longer than that
without the expansion). A possible reason for this
phenomenon is as follows.

With a large Biot number, a local volumetric change
due to freezing proceeded faster from the surface
inward as compared to a freezing process with a low
Biot number. Therefore, the influence of volumetric
change on freezing time is more significant for a high
freezing rate although the influence is negligibly small
for the practical purpose.

An expansion factor in the axis of the spheroid was
found to be about 2% when the geometric center
reached —20°C based on the freezing simulation
which resulted in a 6.12% volumetric expansion.
Since the freezing volumetric expansion of pure water
is about 9%, the 6.12% calculated result for a 77 %
moisture content material is reasonable.

CONCLUSION

A mathematical model with volumetric changes
during a phase change (freezing/thawing) process was

2.4

a Difference (%)

2.2
2.01

1.81

1.6

Difference (%)

% Difference

1.4 = (Vol - No Vol)/Vol *100

1.2

1.0 ~— T T
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Biot number
FiG. 8. The volumetric effect on freezing time calculation

(Tylose gel, mushroom shape, 77% moisture, for tem-
perature down to — 10.0°C).
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formulated by modifying the heat conduction partial
differential equation. To solve this model numerically,
a new numerical scheme for an irregular domain was
developed by applying the finite difference and finite
volume heat balance methods. The simulation results
for the freezing of mushroom-type and freezing/
thawing of spheroid samples show very good agree-
ment with the experimental data. The influence of the
volumetric expansion effect on freezing time esti-
mation of high moisture content food materials was
about 2% which is not significant for the practical
purpose.

The developed computer package can be applied to
general heat conduction processes with phase change
(solidification and melting) and applied to materials
of high moisture content thermal processes.
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SIMULATION PAR DIFFERENCES FINIES DE LA CONDUCTION THERMIQUE AVEC
CHANGEMENT DE PHASE DANS UN DOMAINE IRREGULIER ET AVEC CHANGEMENT
DE YVOLUME

Résumé—Un modele mathématique incluant les changements de volume pour la congélation d’aliment est
obtenu en modifiant I"équation générale de la conduction thermique, parabolique aux dérivées partielles.
La forme de 'aliment est supposée étre axiale avec un contour irrégulier en section droite. Les coordonnées
sont fixées au volume initial par une transformation de coordonnées appropriée. A cause de la forte
variation des propriétés avec la température pendant le changement de phase, les températures nodales
sont résolues numériquement par une méthode générale implicite aux différences finies, tandis qu’une
meéthode de bilan thermique est appliquée aux frontiéres des noeuds avec des conditions aux limites d’espéce
quelconque. Une méthode de calcul numérique est développée et elle est vérifiée expérimentalement par un
probléme général de changement de phase (solidification/fusion).

SIMULATION DER WARMELEITUNG MIT PHASENWECHSEL IN EINEM
UNREGELMASSIG GEFORMTEN LEBENSMITTEL MIT VOLUMENANDERUNG

Zusammenfassung—FEin mathematisches Modell, das dic Volumeniinderung wihrend des Getrierens und
des Auftauens von Lebensmitteln beriicksichtigt, wird durch Modifizieren der allgemeinen partiellen
parabolischen Differentialgleichung der Wirmeleitung erhalten. Die Gestalt des Lebensmittels wird als
Rotationskdrper mit unregelmaBiger Kontur angenommen. Die Koordinaten sind mit dem urspriinglichen
Lebensmittelvolumen fiber eine geeignete Koordinatentransformation verkniipft. Aufgrund der starken
Temperaturabhiingigkcit der Lebensmitteleigenschaften wihrend des Phasenwechsels werden die Tem-
peraturen der Knotenpunkte numerisch mit einem allgemeinen impliziten Differenzenverfahren berechnet.
An den Randknotenpunkten wird hingegen ecine Wirmebilanzmethode mit beliebiger Art von Rand-
bedingungen angewandi. Es wird cine rechnerunterstiitzte numerische Simulation entwickelt und exper-
imentell fiir ein allgemeines Wiirmeleitungsproblem mit Phasenwechsel (Erstarren/Schmelzen) verifiziert.

HCIHOJIb30BAHHUE METO/IA KOHEYHbLIX PAZHOCTEN JJIs1 MOAEJIUPOBAHUA
TEINJOIMPOBOAHOCTH IMTPU HATUUHUN DGA3Z0BOIO MPEBPAITEHNS B YACTULIAX

Annoramms—B pesynbrate Mogupukanmu oOuiero napabojiMYecKoro yPaBHEHHUS TEILIONPOBOJHOCTH
HOJIYYEHa MATEMATUYECKas MOZENb, YIHTHIBAIOMAs OOBEMHBIC M3MEHEHMsS] PH 33MODPAXKHBAHMHM MM
OTTaWBAaHHWHM MALIEBBIX MPOAYKTOB. YacTuiia MHUIUEBBIX MPOXYKTOB PACCMATPHBAETCS KAaK TeJO Bpalie-
HHS C TONEPEeYHbIM CeyeHueM HempaBHnbHOH (opmbl. C NOMOILBIO MPOBEACHHA COOTBETCTBYIOILCIO
upeo6Gpa3oBaHns BBOAATCS KOODAMHATHI, CBA3aHHBIE C Ha4aNbHRIM oOBeMOM. ITockonbky cBoficTsa
4acTHH B polecce (pa3oBoro NpeBpallcHNs B 3HAYHTENILHOM CTENEHH 3aBUCIT OT TeMIEPATYPbi, ypaBHe-
HHAA PEIIAIOTCH YACIIEHHO KOHEYHO-PA3HOCTHBIM METOIOM C HESIBHOW CXEMO#, B TO BpPEMs KaK METOI
TernoBoro 6aj1aHca MCHOJIL3YETCH B IPAHMYHBIX y371aX CETKH NpH MobbIX rpaHMYHBIX yCIOBASX. Pa3spa-
GOTaH 1 JKCNEPHMEHTAILHO OATBEPKACH METOJ YHCICHHOTO MOEIHpOBaHuA obwmedl 3a/a4u Terion-
poBOHOCTH NpH $Ha30BOM MPEBPALIECHHY (3aTBEPICBAHHE,/ TATHHE).



